
This resource provides comprehensive details about our infrastructure and services. Here, you'll
find information on how sdnog's systems are designed, built, and maintained, including various
how-to articles and technical documentation. Our goal is to offer clear and detailed insights into the
operations and management of sdnog services.

sdnog Infrastructure
sdnog services
DNS Hosting Platform Using PowerDNS
sdnog users creation using Ansible
Using Algo VPN to access sdnog Infrastructure
verify sdnog domain with google postmaster tool
Install and Configure NetBox IPAM on Ubuntu
Business Model Canvas for sdnog

documentations

sdnog is non-for-profit organisation, operates with a small but essential infrastructure, thanks to
the generous support of organizations that believe in our mission and want to help our community.
We rely on these contributions to keep things running smoothly.

Currently, our infrastructure includes two servers, both kindly provided by INX.ZA:

This server hosts our Wiki, which runs on MediaWiki software. It’s the server you are using right
now to access all the information and documentation about Sdnog’s activities. This Wiki helps us
gather everything in one place, making it easy for our community members to find and share
important details.

The second server is a cPanel server where we host our email, mailing lists, DNS, and website. We
also received a donation for the basic cPanel license from INX.ZA and the ZANOG team, which
helps us manage these critical services.

Even though our infrastructure is small, it’s made possible by the support of organizations that
believe in what we do. Their help ensures we can continue serving our community effectively.

We Would like to Thanks our wonderful sponsors! without whom our activities would not be
possible

sdnog Infrastructure Provider : INX-ZA
Hosting project - Infrastructure Provider : INX-ZA , ZANOG, Global NOG Alliance.

sdnog Infrastructure

Wiki Server

cPanel Server

Special Thanks To Our Sponsors

https://wiki.inx.net.za/
https://nog.net.za/
https://wiki.inx.net.za/
https://wiki.inx.net.za/
https://nog.net.za/
https://nogalliance.org/

This page provides an overview of the services offered by sdnog. Each service is designed to
support and enhance the operations and management of the sdnog infrastructure and community.

URL: sdnog.sd
Description: The official website for sdnog. It serves as the central hub for information
about the organization, including updates, events, and general announcements. The site
also provides access to other sdnog services and resources.

URL: docs.sdnog.sd
Description: The sdnog Wiki is a collaborative platform for documenting sdnog’s
infrastructure, projects, and best practices. It contains detailed information on how sdnog
services are built, maintained, and managed. The wiki is intended for internal
documentation as well as knowledge sharing within the sdnog community.

URL: lists.sdnog.sd
Description: The sdnog mailing list platform facilitates communication within the sdnog
community. It is used for announcements, discussions, and sharing information related to
sdnog activities. Members can subscribe to various lists based on their interests and
needs.

URL: nms.sdnog.sd
Description: The Network Monitoring System (NMS) provides real-time monitoring and
status updates for sdnog’s network infrastructure. It helps track the health, performance,
and availability of network resources, allowing for proactive management and quick
resolution of issues.

sdnog services

sdnog Website

sdnog Wiki

sdnog Mailing List

sdnog Monitoring System

sdnog DNS portal

https://sdnog.sd/
https://docs.sdnog.sd
https://sdnog.sd/mailman/listinfo/sdnog_sdnog.sd
https://nms.sdnog.sd/

URL: dnscontrol.sdnog.sd
Description: This service provides access to the PowerDNS web GUI for managing DNS
zones within the sdnog infrastructure. Users can create, modify, and monitor DNS records
through this interface. This admin panel is accessible to authorized personnel for
managing DNS configurations.

URL: support.sdnog.sd
Description: The sdnog ticketing system, powered by Request Tracker (RT), is used for
managing support requests and incident reports. It provides a structured way to submit,
track, and resolve support tickets related to sdnog services and infrastructure.

Email: support-at-sdnog.sd
Description: For any support inquiries or assistance, users can reach out to the sdnog
support team via this email address. The support team is available to address issues,
answer questions, and provide help regarding sdnog services and infrastructure.

sdnog Ticketing System

Support Email

https://dnscontrol.sdnog.sd/
https://support.sdnog.sd/

The sdnog DNS-control platform is designed for high availability and reliability of DNS zones. It
consists of a hidden master DNS server and two publicly visible secondary DNS servers, all running
PowerDNS. This structure ensures secure DNS management and effective load distribution

1. Hidden Master DNS Server

Role: Manages DNS zone files and makes updates. This server is not publicly accessible.
Software: PowerDNS Authoritative Server
Responsibilities: Primary source for DNS data, handles updates, and replicates changes
to secondary servers.
Access: Users do not interact with this server directly. Zone management is done through
the PowerDNS web GUI https://dnscontrol.sdnog.sd/login

2. Public Secondary DNS Servers

Role: Serve DNS records to the public, providing redundancy and load balancing.
Software: PowerDNS Authoritative Server
Responsibilities: Retrieve and serve DNS data from the master server.
DNS Names: ns1.hosting.sdnog.sd and ns2.hosting.sdnog.sd

DNS Hosting Platform Using
PowerDNS

Structure

User Interaction

https://dnscontrol.sdnog.sd/login

Users need to contact their Domain provider (eg. for .sd domains contact Sudan Internet Society)
to map their domain’s NS records to the sdnog public secondary servers (ns1.hosting.sdnog.sd and
ns2.hosting.sdnog.sd) They will manage their DNS zones using the PowerDNS web GUI provided by
the hidden master server. Changes made in the master server are automatically replicated to the
secondary servers.

Three servers with PowerDNS installed: one hidden master and two public secondaries. Proper
network configuration and access controls. Basic understanding of DNS and PowerDNS
configuration.

1. Install PowerDNS on All Servers

On each server (master and secondaries), install PowerDNS Authoritative Server. This example
uses a Debian-based system:

follow this page to setup DB: https://www.digitalocean.com/community/tutorials/how-to-install-and-
configure-powerdns-with-a-mariadb-backend-on-ubuntu-14-04

2. Configure the Hidden Master DNS Server

Edit the PowerDNS Configuration File

Open /etc/powerdns/pdns.conf and configure the following parameters:

Replace IP_OF_SECONDARY1 and IP_OF_SECONDARY2 with the IP addresses of the secondary
servers. Ensure the web server is only accessible from internal IPs or localhost.

Set Up the Database

Prerequisites

Installation

 sudo apt update
 sudo apt install pdns-server pdns-backend-mysql

 master=yes
 allow-axfr-ips=IP_OF_SECONDARY1,IP_OF_SECONDARY2
 webserver=yes
 webserver-address=127.0.0.1
 webserver-port=8081

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-powerdns-with-a-mariadb-backend-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-powerdns-with-a-mariadb-backend-on-ubuntu-14-04

Configure the database connection in /etc/powerdns/pdns.conf. For mysql:

mysql -u powerdns_user -p USE powerdns;

Next we will crate a new row in the supermasters table. This row will specify the master server IP
address, and the Fully Qualified Domain Name (FQDN) of the slave server we are currently
configuring.

insert into supermasters values ('111.111.111.111', 'ns2.example-dns.com', 'admin');

Add DNS Zones

Use the PowerDNS web GUI or pdnsutil tool to add and manage DNS zones:

Restart PowerDNS

3. Configure the Public Secondary DNS Servers

Edit the PowerDNS Configuration File

On each secondary server, open /etc/powerdns/pdns.conf and configure:

Set Up Zone Transfers

Configure the secondary servers to request zone transfers from the master server:

Replace MASTER_IP with the IP address of the hidden master server.

Reload DNS Zones

Use the pdnsutil tool to add the zones as secondary:

Restart PowerDNS

 pdnsutil create-zone example.com
 pdnsutil add-record example.com www A 192.0.2.1

sudo systemctl restart pdns

master=no

notify-axfr-ips=MASTER_IP

pdnsutil add-zone example.com ns1.hosting.sdnog.sd

4. Update NS Records

Contact your Domain provider (eg.the Sudan Internet Society) to map your domain’s NS records
to: ns1.hosting.sdnog.sd ns2.hosting.sdnog.sd.

5. Verify the Configuration

Test DNS resolution and replication using tools like dig:

Ensure that updates on the master are correctly replicated to the secondary servers.

Check Logs: Review logs in /var/log/syslog or /var/log/pdns.log for errors.
Verify Connectivity: Ensure all servers communicate properly and that firewalls are
correctly configured.
Zone Transfer Issues: Confirm that allow-axfr-ips and notify-axfr-ips are set correctly.

sudo systemctl restart pdns

dig @ns1.hosting.sdnog.sd example.com
dig @ns2.hosting.sdnog.sd example.com

Troubleshooting

This Ansible playbook configures users with sudo privileges, sets up SSH keys, and requires users
to change their password upon first login.

The playbook performs the following tasks:

1. Installs necessary packages based on the operating system (Debian/Ubuntu or
RedHat/CentOS).

2. Checks if users already exist.
3. Generates passwords for new users.
4. Creates new users with these passwords and assigns them to the sudo group.
5. Sets passwords to expire upon the user's first login.
6. Deploys SSH public keys for users.
7. Sends the password to users via email.

users: A list of users to be created, each with the following attributes:
username: The username for the new account.
ssh_key: The SSH public key to be deployed for the user.
email: The email address where the password will be sent.

For Debian/Ubuntu

sdnog users creation using
Ansible
Ansible Playbook: Sudo Users creation with SSH Keys

This page was written by Manhal Mohamed, sdnog team, on 11 August 2024.

Overview

Variables

Tasks
Task 1. Install Required Packages

 - name: needed packages are installed (Debian/Ubuntu)
 apt:
 name: "{{ item }}"

For RedHat/CentOS

 state: latest
 loop: ["sudo", "openssh-server", "mailutils"]
 when: ansible_facts['os_family'] == "Debian"

 - name: needed packages are installed (RedHat/CentOS)
 yum:
 name: "{{ item }}"
 state: latest
 loop: ["sudo", "openssh-server", "mailx"]
 when: ansible_facts['os_family'] == "RedHat"

Task 2. Check if Users Exist and Set Facts for New Users
 - name: Check if users exist and set fact for new users
 command: "getent passwd {{ item.username }}"
 register: user_check
 loop: "{{ users }}"
 changed_when: false
 failed_when: false

Task 3. Generate Passwords for New Users
 - name: Generate passwords for new users
 set_fact:
 user_passwords: "{{ user_passwords | default({}) | combine({item.item.username: lookup('password', '/dev/null length=15 chars=ascii_letters+digits')}) }}"
 loop: "{{ user_check.results }}"
 when: item.stdout == ""

Task 4. Create New Users with Plain-Text Passwords
 - name: Create new users with plain-text passwords if they do not exist
 user:
 name: "{{ item.username }}"
 password: "{{ user_passwords[item.username] | default('') | password_hash('sha512') }}"
 groups: sudo
 append: yes
 create_home: yes
 shell: /bin/bash
 update_password: on_create
 expires: -1
 loop: "{{ users }}"
 when: item.username in user_passwords

Task 5. Set Password to Expire Upon First Login

 - name: Set password to expire upon first login for newly created users
 command: chage -d 0 "{{ item.username }}"
 loop: "{{ users }}"
 when: item.username in user_passwords

Task 6. Deploy SSH Public Keys for the Users
 - name: Deploy SSH public keys for the users
 authorized_key:
 user: "{{ item.username }}"
 state: present
 key: "{{ item.ssh_key }}"
 loop: "{{ users }}"

Task 7. Send Password to Users via Email
 - name: Send password to users via email
 mail:
 host: relay.example.com
 port: 25
 to: "{{ item.email }}"
 subject: "Your new account password"
 body: |
 Dear {{ item.username }},

 Your new account has been created on the following host: {{ ansible_host }}.

 Username: {{ item.username }}
 Password: {{ user_passwords[item.username] }}

 Please change your password upon first login.
 Note: This is an automated message generated by Ansible. Please do not reply to this email.

 Best regards,
 Sdnog Team

 from: sdnog-ansible-at-email.com
 loop: "{{ users }}"
 when: item.username in user_passwords

Appendix : The Full Code
 - name: Configure sudo users with SSH keys and require password change on first login
 hosts: host-ip-address
 become: true
 vars:
 users:

 - username: sdnog-user
 ssh_key: "ssh-ed25519 some SSH KEY here eddsa-key-20240807"
 email: "email-at-example.com"

 tasks:
 - name: needed packages are installed (Debian/Ubuntu)
 apt:
 name: "{{ item }}"
 state: latest
 loop: ["sudo", "openssh-server", "mailutils"]
 when: ansible_facts['os_family'] == "Debian"

 - name: needed packages are installed (RedHat/CentOS)
 yum:
 name: "{{ item }}"
 state: latest
 loop: ["sudo", "openssh-server", "mailx"]
 when: ansible_facts['os_family'] == "RedHat"

 - name: Check if users exist and set fact for new users
 command: "getent passwd {{ item.username }}"
 register: user_check
 loop: "{{ users }}"
 changed_when: false
 failed_when: false

 - name: Generate passwords for new users
 set_fact:
 user_passwords: "{{ user_passwords | default({}) | combine({item.item.username: lookup('password', '/dev/null length=15 chars=ascii_letters+digits')}) }}"
 loop: "{{ user_check.results }}"
 when: item.stdout == ""

 - name: Create new users with plain-text passwords if they do not exist
 user:
 name: "{{ item.username }}"
 password: "{{ user_passwords[item.username] | default('') | password_hash('sha512') }}"
 groups: sudo
 append: yes
 create_home: yes
 shell: /bin/bash
 update_password: on_create
 expires: -1
 loop: "{{ users }}"
 when: item.username in user_passwords

 - name: Set password to expire upon first login for newly created users
 command: chage -d 0 "{{ item.username }}"
 loop: "{{ users }}"
 when: item.username in user_passwords

 - name: Deploy SSH public keys for the users
 authorized_key:
 user: "{{ item.username }}"
 state: present

 key: "{{ item.ssh_key }}"
 loop: "{{ users }}"

 - name: Send password to users via email
 mail:
 host: relay.example.com
 port: 25
 to: "{{ item.email }}"
 subject: "Your new account password"
 body: |
 Dear {{ item.username }},

 Your new account has been created on the following host: {{ ansible_host }}.
 Username: {{ item.username }}
 Password: {{ user_passwords[item.username] }}

 Please change your password upon first login.

 Note: This is an automated message generated by Ansible. Please do not reply to this email.

 Best regards,
 Sdnog Team

 from: sdnog-ansible-at-example.com
 loop: "{{ users }}"
 when: item.username in user_passwords

Algo VPN simplifies deploying a secure VPN server across multiple platforms. This guide provides a
step-by-step walkthrough for setting up Algo VPN on a local Ubuntu server to securely access the
sdnog infrastructure.

Before starting, ensure the following:

Operating System: Ubuntu Server (18.04 or later)
Privileges: Sudo access on the server
Skills: Basic familiarity with command-line operations

Before installing Algo VPN, ensure that your system is up-to-date. Open a terminal and run the
following commands:

Algo VPN requires certain dependencies to be installed. Use the following commands to install
them:

Clone the Algo VPN repository from GitHub to your local server:

Using Algo VPN to access
sdnog Infrastructure

This page was written by Manhal Mohamed, sdnog team, on 8 August 2024.

Prerequisites

Step-by-Step Setup
1. Update Your System

sudo apt update
sudo apt upgrade -y

2. Install Dependencies

apt-get install git apparmor build-essential python3-dev python3-pip python3-setuptools python3-virtualenv
libffi-dev libssl-dev -y

3. Clone the Algo VPN Repository

Create a Python virtual environment and activate it:

Install Algo VPN and its dependencies using pip:

Run the Algo VPN setup script to create a configuration file:

Follow the prompts to configure your VPN. You will need to provide details such as:
The VPN server's public IP address or domain name Your preferred VPN protocol (e.g., WireGuard or
IPsec) User accounts for VPN access

Once the configuration is complete, deploy Algo VPN with the following command:

The deployment process will set up the VPN server according to the configuration you provided.

git clone https://github.com/trailofbits/algo.git
cd algo

4. Create and Activate a Python Virtual Environment

cd algo
python3 -m virtualenv --python=/usr/bin/python3 .env
source .env/bin/activate

5. Install Algo VPN

python3 -m pip install -U pip virtualenv
python3 -m pip install -r requirements.txt

6. Configure Algo VPN

./algo

7. Deploy Algo VPN

./algo

TASK [Set required ansible version as a fact] ***
ok: [localhost] => (item=ansible==2.9.7)

TASK [Verify Python meets Algo VPN requirements] **
ok: [localhost] => {
 "changed": false,
 "msg": "All assertions passed"
}

TASK [Verify Ansible meets Algo VPN requirements] ***

ok: [localhost] => {
 "changed": false,
 "msg": "All assertions passed"
}
[WARNING]: Found variable using reserved name: no_log

PLAY [Ask user for the input] ***

TASK [Gathering Facts] **
ok: [localhost]
[Cloud prompt]
What provider would you like to use?
 1. DigitalOcean
 2. Amazon Lightsail
 3. Amazon EC2
 4. Microsoft Azure
 5. Google Compute Engine
 6. Hetzner Cloud
 7. Vultr
 8. Scaleway
 9. OpenStack (DreamCompute optimised)
 10. CloudStack (Exoscale optimised)
 11. Linode
 12. Install to existing Ubuntu 18.04 or 20.04 server (for more advanced users)

Enter the number of your desired provider
:
12

Type 12 and hit Enter to setup Algo VPN on Ubuntu 20.04 server. You will be asked for several questions as shown below:

TASK [Set facts based on the input] ***
ok: [localhost]
[Cellular On Demand prompt]
Do you want macOS/iOS IPsec clients to enable "Connect On Demand" when connected to cellular networks?
[y/N]
:y

TASK [Cellular On Demand prompt] **
ok: [localhost]
[Wi-Fi On Demand prompt]
Do you want macOS/iOS IPsec clients to enable "Connect On Demand" when connected to Wi-Fi?
[y/N]
:y

TASK [Wi-Fi On Demand prompt] ***
ok: [localhost]
[Trusted Wi-Fi networks prompt]
List the names of any trusted Wi-Fi networks where macOS/iOS IPsec clients should not use "Connect On Demand"
(e.g., your home network. Comma-separated value, e.g., HomeNet,OfficeWifi,AlgoWiFi)
:HomeNet

TASK [Trusted Wi-Fi networks prompt] **
ok: [localhost]

Once the installation has been completed successfully, you should get the following output:

[Compatible ciphers prompt]
Do you want the VPN to support Windows 10 or Linux Desktop clients? (enables compatible ciphers and key exchange, less secure)
[y/N]
:y

TASK [Compatible ciphers prompt] **
ok: [localhost]
[Retain the CA key prompt]
Do you want to retain the CA key? (required to add users in the future, but less secure)
[y/N]
:y

TASK [Retain the CA key prompt] ***
ok: [localhost]
[DNS adblocking prompt]
Do you want to install an ad blocking DNS resolver on this VPN server?
[y/N]
:y

TASK [DNS adblocking prompt] **
ok: [localhost]
[SSH tunneling prompt]
Do you want each user to have their own account for SSH tunneling?
[y/N]
:N
Enter the IP address of your server: (or use localhost for local installation):
[localhost]
:
localhost
TASK [local : pause] **
ok: [localhost]

TASK [local : Set the facts] **
ok: [localhost]
[local : pause]
What user should we use to login on the server? (note: passwordless login required, or ignore if you're deploying to localhost)
[root]
:
root

Enter the public IP address or domain name of your server: (IMPORTANT! This is used to verify the certificate)
vpn.jnb.sdnog.sd

8. Access sdnog Infrastructure

TASK [debug] **
ok: [localhost] => {
 "msg": [
 [
 "\"# Congratulations! #\"",
 "\"# Your Algo server is running. #\"",

After the installation, you should see the configuration file for each VPN profile using the following
command:

You should see all the profile in the following output:

You can use any of the above files on your client device to connect to the Algo VPN server.

To access sdnog infrastructure via the VPN, you need to configure your local machine to connect
to the VPN server.
Download the VPN client configuration files from the Algo VPN setup and import them into your VPN
client.

For WireGuard, you can use the wg-quick tool to connect:

For IPsec, follow the instructions specific to your operating system to import the configuration and
connect.

Update the users list in your config.cfg.

 "\"# Config files and certificates are in the ./configs/ directory. #\"",
 "\"# Go to https://whoer.net/ after connecting #\"",
 "\"# and ensure that all your traffic passes through the VPN. #\"",
 "\"# Local DNS resolver 172.18.7.104 #\"",
 ""
],
 " \"# The p12 and SSH keys password for new users is 7OEfSUZt0 #\"\n",
 " \"# The CA key password is g5AvcHzZygjV@4AN #\"\n",
 " "
]
}

PLAY RECAP **
localhost : ok=125 changed=39 unreachable=0 failed=0 skipped=53 rescued=0 ignored=0

ls configs/your-server-ip/wireguard/

apple desktop.conf desktop.png laptop.conf laptop.png phone.conf phone.png user1.conf user1.png

sudo wg-quick up /path/to/your/configuration.conf

9. Adding new VPN users

vim config.cfg
users:
 - laptop
 - desktop
 - sdnog
 - Sara
 - Nishal
 - Manhal

Open a terminal, cd to the algo directory, and activate the virtual environment with :

Run the command and it will require password , us the output password from step 8

After this process completes, the Algo VPN server will contain only the users listed in the config.cfg
file.

If you encounter issues during installation or configuration:

Then immediately re-run ./algo.

Check the Algo VPN documentation for troubleshooting tips.
Ensure that your firewall rules allow VPN traffic.
Verify that your VPN client is correctly configured.

By following these steps, you should have a functioning Algo VPN setup on your local Ubuntu
server, providing secure access to the sdnog infrastructure. For more advanced configurations and
additional features, refer to the Algo VPN GitHub repository.

 - Hafiz

source .env/bin/activate

./algo update-user

Troubleshooting

cd algo/
sudo rm -rf /etc/wireguard/*
rm -rf configs/*

Conclusion

We have noticed some participants subscribe to sdnog mailing list using gmail accounts. and they
do not receive some of the list's email and some being forwarded to the Junk folder. this because
the DKIM and DMARC fail with domain gmail.com

so there are many steps need to be fixed , one of them verifying the sdnog.sd domain with google
Postmaster Tools, and here we will see how could be done.

1. You need to generate a DNS validation key TXT resource record from google Postmaster Tools
using a gmail account. login and the enter domain name you want to verify

2. then copy the TXT record and add this to your DNS zone file , and then click on verify.

verify sdnog domain with
google postmaster tool

This page was written by Sara Alamin sdnog team, on 25 October 2021

https://sdnog.sd/index.php/mailing-list
https://docs.sdnog.sd/uploads/images/gallery/2024-11/dkim-and-dmark-failed.png
https://support.google.com/mail/answer/9981691
https://docs.sdnog.sd/uploads/images/gallery/2024-11/add-the-domain-to-be-authenticated.png

3. after few minutes, the domain will be verified.

the above steps seems very easy to do. but while we are doing this for sdnog.sd we found some
issues. We added the TXT record to the zone, but it was not propagated to DNS secondaries:

so we noticed not all sdnog secondaries servers are synced, using "dig soa sdnog.sd +nssearch"
command:

Troubleshooting

 $ dig txt sdnog.sd
 ;; ANSWER SECTION:
 sdnog.sd.		60	IN	TXT	"v=spf1 mx a ip4:196.10.53.12 ip6:2001:43f8:1f3:a00::12 a:mail.sdnog.sd ~all"

 $ dig soa sdnog.sd +nssearch | awk -F ' ' ' {print $4, $10, $11}'
 2021051905 server 185.70.56.53
 2021051905 server 193.110.181.53
 2021102409 server 206.220.228.134
 2021051905 server 196.10.54.53
 2021102409 server 196.216.2.1
 2021051905 server 196.10.55.53
 2021051905 server 196.10.52.53

https://docs.sdnog.sd/uploads/images/gallery/2024-11/add-txt-record-to-dns.png
https://docs.sdnog.sd/uploads/images/gallery/2024-11/the-domain-has-been-verified.png

so we checked the acl section and " allow-transfer" option to know if we have any limitation on how
the zone could be transferred.
after fixing some configuration here, we updated the "Serial" time for the zone and restarted the
service. and now everything is fine

and all the secondaries are synced :

 $ dig txt sdnog.sd
 ;; ANSWER SECTION:
 sdnog.sd.		60	IN	TXT	"v=spf1 mx a ip4:196.10.53.12 ip6:2001:43f8:1f3:a00::12 a:mail.sdnog.sd ~all"
 sdnog.sd.		60	IN	TXT	"google-site-verification=FijZa4-e16D4V2Vqe6gnMgWa5fALU6tozOzWeOtOtgo"

 $ dig soa sdnog.sd +nssearch | awk -F ' ' ' {print $4, $10, $11}'
 2021102409 server 185.70.56.53
 2021102409 server 193.110.181.53
 2021102409 server 206.220.228.134
 2021102409 server 196.216.2.1
 2021102409 server 196.10.54.53
 2021102409 server 196.10.55.53
 2021102409 server 196.10.52.53

Ensure the following packages and dependencies are installed:

Python 3.8 or higher
PostgreSQL 12 or higher
Redis
Netbox 3.0 or higher
Nginx
Gunicorn

Create a non-root user with sudo access netboxuser

Install PostgreSQL:

sudo apt install postgresql libpq-dev -y

Start the database server:

sudo systemctl start postgresql

Enable the database server to start automatically on reboot:

sudo systemctl enable postgresql

Change the default PostgreSQL password:

sudo passwd postgres

Switch to the postgres user:

su - postgres

Log in to PostgreSQL:

psql

Install and Configure NetBox
IPAM on Ubuntu

This page was written by Manhal Mohamed, sdnog team, on 16 August 2024.

Install and configure PostgreSQL

Create the NetBox database:

CREATE DATABASE netbox;

Create the netbox user with a strong password (replace my_strong_password with a secure one):

CREATE USER netbox WITH ENCRYPTED PASSWORD 'my_strong_password';

Grant privileges to the netbox user on the netbox database:

GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;

Exit PostgreSQL:

\q

Return to your non-root sudo user account:

exit

Redis® is an in-memory key-value store used by NetBox for caching and queuing.

Install Redis®:

sudo apt install -y redis-server

Install all required packages:

sudo apt install python3 python3-pip python3-venv python3-dev build-essential libxml2-dev libxslt1-dev libffi-dev
libpq-dev libssl-dev zlib1g-dev git -y

Update pip to the latest version:

sudo pip3 install --upgrade pip

Create the installation directory and change to it:

sudo mkdir -p /opt/netbox/ && cd /opt/netbox/

Clone NetBox from the official Git repository:

sudo git clone -b master https://github.com/netbox-community/netbox.git .

Create a system user named netbox:

sudo adduser --system --group netbox

2. Install Redis®

3. Install and configure NetBox

https://github.com/netbox-community/netbox.git

Grant the netbox user ownership of the media directory:

sudo chown --recursive netbox /opt/netbox/netbox/media/

Navigate to the configuration directory:

cd /opt/netbox/netbox/netbox/

Copy the example configuration file:

sudo cp configuration_example.py configuration.py

Create a symbolic link for the Python binary:

sudo ln -s /usr/bin/python3 /usr/bin/python

Generate a random SECRET_KEY for the configuration:

sudo /opt/netbox/netbox/generate_secret_key.py

Copy the generated secret key and use it in the configuration file.

Edit the configuration file:

sudo nano /opt/netbox/netbox/netbox/configuration.py

Update the file with the following settings:

Run the upgrade script:

sudo /opt/netbox/upgrade.sh Enter the Python virtual environment:

source /opt/netbox/venv/bin/activate Navigate to the NetBox directory:

cd /opt/netbox/netbox Create a superuser account:

python3 manage.py createsuperuser Reboot the system:

ALLOWED_HOSTS = ['*']

DATABASE = {
 'NAME': 'netbox',
 'USER': 'netbox',
 'PASSWORD': 'my_strong_password',
 'HOST': 'localhost',
 'PORT': '',
}

SECRET_KEY = '<generated_secret_key>'

sudo reboot

Copy the Gunicorn configuration file:

sudo cp /opt/netbox/contrib/gunicorn.py /opt/netbox/gunicorn.py

Copy the systemd service files:

sudo cp /opt/netbox/contrib/*.service /etc/systemd/system/ Reload the systemd daemon:

sudo systemctl daemon-reload Start the NetBox services:

sudo systemctl start netbox netbox-rq Enable the services to start at boot:

sudo systemctl enable netbox netbox-rq

Install the Nginx web server:

sudo apt install -y nginx Copy the Nginx configuration file:

sudo cp /opt/netbox/contrib/nginx.conf /etc/nginx/sites-available/netbox

Edit the configuration file:

sudo nano /etc/nginx/sites-available/netbox

Replace the server name with your server's IP address:

4. Configure Gunicorn

5. Configure Systemd

6. Configure Nginx Web Server

server {
 listen 80;
 server_name 192.0.2.10; # Update this with your server's IP

 client_max_body_size 25m;

 location /static/ {
 alias /opt/netbox/netbox/static/;
 }

 location / {
 proxy_pass http://127.0.0.1:8001;
 proxy_set_header X-Forwarded-Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-Proto $scheme;
 }

Delete the default Nginx configuration:

sudo rm /etc/nginx/sites-enabled/default

Create a symbolic link for the NetBox configuration:

sudo ln -s /etc/nginx/sites-available/netbox /etc/nginx/sites-enabled/netbox

Restart the Nginx service:

sudo systemctl restart nginx

access your url via the browser

}

Key Partners Key Activities Key Resources

Internet Service Providers
in Sudan
Technology companies
Educational institutions
Government agencies
related to
telecommunications
International network
operator groups

Organizing forums and
events for knowledge
exchange
Providing network
education and training
Facilitating technical
collaboration
Promoting open-source
technologies
Conducting research on
network technologies

Volunteer network
engineers and experts
Technical knowledge and
expertise
Community of network
professionals
Online platforms for
communication and
collaboration

Value Propositions Customer Relationships Channels

Open platform for
knowledge exchange in
networking
Capacity building in
network engineering
Enhancing the quality of
Internet services in Sudan
Promoting collaboration
among network
professionals
Access to cutting-edge
network technologies and
practices

Community-based
interactions
Peer-to-peer learning and
support
Long-term engagement
through regular events
and forums

Online forums and
discussion boards
Physical events and
meetups
Workshops and training
sessions
Social media platforms
Website and email
newsletters

Customer Segments Cost Structure Revenue Streams

Business Model Canvas for
sdnog

An idea by Manhal Mohamed: a Business Model Canvas for sdnog

Network engineers in
Sudan
Internet Service Providers
Technology companies
Students and researchers
in networking fields
Government agencies
involved in
telecommunications

Event organization
expenses
Online platform
maintenance
Educational materials
development
Volunteer coordination
costs
Marketing and outreach
expenses

Membership fees (if
applicable)
Sponsorships from
technology companies
Grants from educational or
research institutions
Donations from
community members
Fees for specialized
workshops or training
sessions

